Detectan que el agujero negro M87* tiene campos magnéticos intensos y ordenados
El hoyo negro supermasivo M87*, el más estudiado desde la Tierra y ubicado dentro de la galaxia M87, a unos 55 millones de años luz de nuestro planeta, posee en su vecindad luz que gira en espiral, al escapar de la intensa gravedad que éste tiene.
El estudio de este fenómeno, llamado polarización
circular de la luz, y la dirección en que gira el campo eléctrico de ésta,
revela por primera vez información valiosa sobre el campo magnético y los tipos
de partículas que rodean al agujero negro.
Estos datos han sido captados por la colaboración
internacional Event Horizon Telescope (EHT, Telescopio del Horizonte de
Eventos), que utiliza un telescopio virtual del tamaño de la Tierra formado por
instrumentos individuales sincronizados, que están distribuidos en todo el
mundo.
En el EHT colaboran más de 300 científicos de
África, Asia, Europa y América, entre ellos Alejandro Cruz Osorio, del
Instituto de Astronomía (IA), y Laurent Loinard, del Instituto de
Radioastronomía y Astrofísica (IRyA), ambos de la UNAM. El EHT presentó sus
resultados en un artículo publicado ayer en la revista Astrophysical Journal
Letters.
El nuevo artículo respalda los hallazgos previos del
EHT que indican que el campo magnético cercano a M87* es lo suficientemente
intenso como para frenar la caída de materia hacia él.
“Analizar la estructura de los campos magnéticos en
las cercanías del agujero negro supermasivo M87* usando luz polarizada es
crucial para entender la naturaleza del agujero negro y del gas caliente a su
alrededor”, dijo Cruz Osorio.
Añadió que la estructura espiral inferida en estos
campos magnéticos es consistente con las predicciones teóricas y apunta a que
el gas debe estar altamente magnetizado, lo que ayuda a acelerar el material
del característico chorro de la galaxia M87.
Los científicos consideraron que los análisis de la
polarización circular de la luz, llevadas a cabo por el EHT, revelan nuevos
resultados que proporcionan la certeza de que el campo magnético atraviesa el
gas caliente que cae en el agujero negro.
Estas observaciones sin precedentes responden
interrogantes acerca de cómo los agujeros negros consumen materia y la expulsan
en chorros más allá de sus galaxias anfitrionas.
“El EHT es una de las colaboraciones científicas más
importantes en el ámbito mundial actualmente. La participación de México en
este proyecto le da visibilidad internacional”, comentó Loinard, del IRyA de la
UNAM Campus Morelia.
Señaló que también permite que estudiantes y
personas jóvenes en etapas tempranas de su carrera de investigación estén
inmersas en esta emocionante y vibrante colaboración, en la que participan
algunas de las y los mejores científicos del orbe; “es realmente global lo que
permite interactuar con personas de muchos horizontes. Es una experiencia muy
enriquecedora participar en ella”.
Esta simulación por computadora representa un disco
de plasma (gas caliente) que rodea al agujero negro supermasivo ubicado en el
núcleo de la galaxia M87. Un reciente análisis de la luz polarizada circular, o
en espiral, en las observaciones del Event Horizon Telescope, revela que los
campos magnéticos en las proximidades del agujero negro son muy intensos y
desempeñan un papel crucial al frenar el flujo de materia hacia el agujero
negro y promueven la formación de chorros de materia que se desplazan a
velocidades cercanas a la de la luz. Imagen: George Wong.
En 2019, el EHT publicó la primera imagen de un
anillo de plasma, gas muy caliente, cerca del horizonte de sucesos de M87*.
Luego, en 2021, la comunidad del EHT difundió una imagen que mostraba las
direcciones de oscilación de los campos eléctricos a lo largo de la imagen, un
fenómeno conocido como polarización lineal. Este hallazgo marcó la primera
indicación de que los campos magnéticos en las cercanías del agujero negro
estaban altamente organizados y poseían una intensidad significativa.
Las nuevas mediciones de la polarización circular,
que describen cómo los campos eléctricos de la luz giran en espiral, aportan
evidencias aún más sólidas acerca de la presencia de estos campos magnéticos
intensos y ordenados en las proximidades del agujero negro.
Los científicos explicaron que la señal en
polarización circular es 100 veces más débil que los datos no polarizados que
utilizaron para obtener la primera imagen de un agujero negro. Así que detectar
esta señal tan débil en los datos fue comparable a intentar escuchar una
conversación en medio del ruido ensordecedor de un martillo de construcción.
Para realizar este minucioso análisis, el equipo de
investigación desarrolló nuevos métodos con el propósito de reconstruir una
imagen polarizada a partir de las mediciones limitadas y ruidosas
proporcionadas por el EHT. Estos métodos fueron sometidos a exhaustivas
pruebas, en las que fue fundamental contrastar los distintos métodos de
análisis con datos simulados y entre sí.
..
Comentarios
Publicar un comentario