Científicos de España y Sudáfrica transportan una imagen por red cuántica

 

La revista Nature Communications ha publicado recientemente una investigación realizada por científicos de la Universidad de Witwatersrand (Wits, Sudáfrica) y el Instituto de Ciencias Fotónicas (ICFO), que demuestra el transporte de una imagen impresa en un haz de luz a través de una red sin enviar físicamente la imagen. Este es un paso importante hacia la realización de una red cuántica para la transmisión de información escrita con un alfabeto de alta dimensión.

La comunicación cuántica a largas distancias es una parte esencial en la seguridad de la información y se ha demostrado con estados bidimensionales (cúbits) en distancias muy largas entre satélites. Esto puede parecer suficiente si lo comparamos con su contraparte clásica, es decir, enviar bits que se pueden codificar en 1 (señal) y 0 (sin señal), uno a la vez. Sin embargo, la óptica cuántica nos permite aumentar el alfabeto y describir sistemas más complejos de forma segura en un solo envío, como una huella digital única o un rostro.

"Tradicionalmente, dos entidades se comunican entre sí enviando físicamente información de una a otra, incluso en el ámbito cuántico", comenta el profesor Andrew Forbes, el investigador principal de Wits, quien añade: "Ahora es posible teletransportar información para que nunca viaje físicamente a través de la conexión: una tecnología de Star Trek hecha realidad".

Hasta ahora, el teletransporte solo se había demostrado entre dos partes utilizando alfabetos de baja dimensión, lo que requiere varios fotones entrelazados para enviar imágenes complejas.

En este estudio, el equipo realizó la primera demostración experimental del transporte cuántico de estados de alta dimensión con solo dos fotones entrelazados como recurso cuántico, lo que dio como resultado que la información pareciera ser teletransportada del emisor al receptor. Para avanzar, el equipo utilizó un detector óptico no lineal que evita la necesidad de fotones adicionales, pero funciona para cualquier "patrón" que deba enviarse.

Con su técnica, los científicos aseguran que puede enviar información escrita en un alfabeto de 15 dimensiones, con un esquema escalable a dimensiones aún mayores, allanando el camino para conexiones de redes cuánticas con mayor capacidad de información.

 

Crean una 'vacuna' para que las plantas eviten las infecciones y prescindir de los agroquímicos

En su experimento, los investigadores idearon una forma elegante de transferir de forma segura información espacial de alta dimensión entre dos partes, nuestros famosos Alice y Bob (dos inteligencias artificiales), utilizando un esquema inspirado en el teletransporte.

A diferencia de experimentos anteriores que habían teletransportado con éxito estados tridimensionales (usando entrelazamiento de trayectorias), requiriendo desafortunadamente la ayuda de fotones entrelazados adicionales, aquí el equipo usó tres y dos fotones entrelazados, que forman el canal cuántico.

Primero, codificaron la información para ser teletransportada dentro de una "fuente de luz estampada" con un alfabeto conteniendo 15 elementos. Paralelamente crearon un par de fotones entrelazados en estas 15 dimensiones. Del par de fotones, el segundo fotón entrelazado viajó de Bob a Alice y se midió la interacción con la fuente de luz modelada en Alice con un detector espacial no lineal, a través de lo que se conoce como Medición del Estado de Bell (BSM).

El efecto de esta medición fue mezclar los estados del segundo fotón y de la fuente de luz en un segundo cristal no lineal y realizar una proyección espacial particular sobre el fotón único resultante de esa medición.

Ahora bien, gracias a que el primer y el segundo fotón estaban entrelazados al principio, es decir, su estado conjunto estaba altamente correlacionado, el resultado del BSM generó la transferencia de la información codificada de la fuente de luz coherente al primer fotón, que había permanecido en Bob y que nunca había estado en contacto con la fuente.

El potencial de este nuevo protocolo de transporte cuántico, lo ilustran los autores con una figura. Imagine a un cliente que desea enviar información confidencial a un banco, tal vez una huella digital. En la comunicación cuántica tradicional la información debe enviarse físicamente del cliente al banco, siempre con riesgo de ser interceptado (aunque sea segura).

En el esquema de transporte cuántico propuesto, el banco envía un solo fotón (uno de un par entrelazado) sin información al cliente, quien lo superpone en un detector no lineal con la información que se va a enviar.

Como resultado, la información aparece en el banco exactamente como si hubiera sido transportada allí. Nunca se envía físicamente información entre las dos partes, por lo que el intentar interceptar la señal no tiene sentido, mientras que el vínculo cuántico que conecta a las partes se establece mediante el intercambio de fotones cuánticos entrelazados.

"Este protocolo tiene todas las características del teletransporte, excepto por un ingrediente esencial: requiere del uso de un rayo láser intenso para que el detector no lineal sea eficiente, de modo que el remitente pueda saber qué se va a enviar, pero no necesita saberlo", explica Forbes.

"En este sentido, no se trata estrictamente de teletransporte, pero podría serlo en el futuro si el detector no lineal pudiera hacerse más eficiente". Incluso tal como está ahora, abre un nuevo camino para conectar redes cuánticas, marcando el comienzo de la óptica cuántica no lineal como recurso.

"Esperamos que estos resultados que validan la viabilidad del proceso motiven nuevos avances en el campo de la óptica no lineal, superando los límites hacia una implementación cuántica completa", afirma Adam Vallés del ICFO (Barcelona), uno de los líderes del proyecto que trabajó sobre el experimento durante su beca postdoctoral en Wits.

"Debemos ser cautelosos —advierte—, ya que esta configuración no podría evitar que un remitente engañoso conserve mejores copias de la información para ser transportada, lo que significa que podríamos terminar con muchos clones del Sr. Spock en el mundo de Star Trek.

"Desde un punto de vista práctico, la configuración que demostramos actualmente ya se puede utilizar para establecer un canal seguro de alta dimensión para comunicaciones cuánticas entre dos partes, siempre que el protocolo no necesite alimentarse con fotones individuales, como sería el de los repetidores cuánticos", ha explicado el investigador.

"Realizar tales experimentos con la tecnología actualmente disponible ha sido una aventura interesante, y debemos agradecer a Bereneice Sephton de Wits por su determinación y sus habilidades extraordinarias para domar un experimento tan monumental. Este es un verdadero esfuerzo experimental por el cual se la debe elogiar", ha destacado Vallés.

Forbes se hace eco de este sentimiento: "Este fue un experimento heroico y la doctora Sephton debe ser reconocida porque fue ella quien hizo que el sistema funcionara y realizó los experimentos clave".

Ahora, el equipo planea seguir trabajando en esta dirección y el siguiente paso se centrará en el transporte cuántico a través de una red de fibra óptica.

.-

Comentarios

Entradas populares